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Abstract. We study two-component Bose-Einstein condensates that behave collectively as a spin system
obeying the dynamics of a quantum kicked top. Depending on the nonlinear interaction between atoms
in the classical limit, the kicked top exhibits both regular and chaotic dynamical behavior. The quantum
entanglement is physically meaningful if the system is viewed as a bipartite system, where the subsystem is
any one of the two modes. The dynamics of the entanglement between the two modes in this classical chaotic
system has been investigated. The chaos leads to rapid rise and saturation of the quantum entanglement.
Furthermore, the saturated values of the entanglement fall short of its maximum. The mean entanglement
has been used to clearly display the close relation between quantum entanglement and underlying chaos.

PACS. 03.75.Gg Entanglement and decoherence in Bose-Einstein condensates — 05.45.Mt Quantum chaos;
semiclassical methods — 03.75.Kk Dynamic properties of condensates; collective and hydrodynamic exci-

tations, superfluid flow — 05.30.Jp Boson systems

1 Introduction

In recent years, quantum entanglement (referred to here-
after as entanglement) has been regarded as a physical
resource which can be exploited to perform many use-
ful tasks in quantum information processing [1-5]. Stud-
ies of the entanglement characteristics of various inter-
acting many-body systems have also given exciting new
insight into the fundamental aspects of quantum physics.
Latterly, a new emphasis has emerged that entanglement
can be related to the properties of a many-body system.
Since entanglement is responsible for the appearance of
long-range correlations, it has been demonstrated that
it plays a crucial role in the study of quantum phase
transitions(QPTs) [6-10]. There have also been recent at-
tempts to relate localization and bifurcation to entangle-
ment [11-15].

However, much more attention has been paid to the
connection between entanglement and classical chaos, be-
cause of the challenges in identifying quantum signature
in classically chaotic systems [16-19]. Such a connection
has been previously examined with the help of several
different models, including an N-atom Jaynes-Cummings
model, kicked top, coupled kicked top and Dicke model,
as well as the XY model. For example, it was found for
the N-atom Jaynes-Cummings model that the entangle-
ment rate, quantitatively expressed in terms of the re-
duced density linear entropy between the atom system
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and the radiation field, is considerably enhanced if the
initial wave packet is prepared in a chaotic region [20,21].
The work of Miller and Sarkar has shown that a similar
property also exists in the weakly coupled tops, and the
von Neumann entropy of the subsystem linearly depends
on the sum of positive Lyapunov exponents of the corre-
sponding classical system [22]. Along these lines, it was
further found that the increment of the chaos strength
does not enhance the production rate of the entanglement
in the same system [23,24]. Very recently, the mean en-
tanglement over time has been used to identify the edge
of chaos in the Dicke and top model [25,26]. Although a
complete theory for many-body entanglement is still lack-
ing, most studies of the entanglement in a chaotic system
have employed the bipartite entanglement for pure state
and the pairwise entanglement of qubit pairs in a multi-
qubit system. For bipartite entanglement, where the total
system is divided into two subsystems, the entropies of a
subsystem, for example, the von Neumann and linear en-
tropies, are used to quantify the amount of entanglement
the two subsystems have. Pairwise entanglement, on the
other hand, considers the degree of entanglement of qubit
pairs, where the concurrence is adopted as the measure
of the entanglement. Recent results have supported the
conclusion that chaos can cause the increase of the bipar-
tite entanglement, but leads to reduction of the pairwise
entanglement [11,26,27]. This means that the entangle-
ment behavior associated with the chaotic parameter re-
gions depends on the measure of the entanglement. There-
fore, it will be very interesting to further understand these
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properties of entanglement for other system with differ-
ent entanglement measures. In particular, some authors
have also employed the purity fidelity of a reduced den-
sity matrix for a composite quantum system as a different
entanglement measure to find qualitatively different decay
behaviors between the integrable and chaotic systems [28].

Recently produced two component Bose-Einstein con-
densates (BECs) provide us with a different system [29]
to the above-mentioned ones, which are often viewed as
a collection of N single qubit subsystems. Hines and co-
workers claimed that the decomposition of the BECs sys-
tem into subsystems consisting of individual bosons is not
physically realizable due to the indistinguishibility of the
boson within the condensates [30], and the entanglement
is only physically meaningful if the system is viewed as a
bipartite, where the two subsystems are the two modes.
In the present paper, we propose a scheme to realize
the well-known nonlinear quantum top in two-component
Bose-Einstein condensates (BECs). Although the relation
between entanglement and classical chaos have been stud-
ied in detail for the quantum top in reference [26], the
system under the previous consideration is regarded as
a collection of N single qubit subsystems. Here we con-
sider the two component BEC as two modes as in the
electromagnetism field, and investigate the relation be-
tween the mode entanglement and classical chaos in the
kicked two-component BEC system. In the two BEC sys-
tem, some well-known results for the quantum top will ex-
press new physical meaning. For example, in the classical
limit, an increase in the strength of interaction between
atoms, which can be tuned by Feshbach resonance [31],
can drive the system gradually from a mainly regular mo-
tion to a dominantly chaotic one. In the strong interaction
limit, the system can be turned into a quantum kicked ro-
tor in phase presentation. Therefore, the two component
BEC system provides a good test ground for the study
of quantum chaos. Here the von Neumann entropy of the
subsystem is employed to measure the mode entanglement
comparing to the linear entropy and concurrence used in
reference [26]. Our results support the previous conclu-
sion that the von Neumann entropy increases more rapidly
for an initial state localized in the chaotic region than
for one centered on a fixed point, but a closer classical-
quantum correspondence may be demonstrated in terms of
the mode entanglement. Different from the linear entropy
used for distinguishable qubit systems in reference [26],
the von Neumann entropy can here have nonzero initial
values, whether the initial conditions are in the chaotic sea
or not. Furthermore, the entropy for a fixed point or stable
orbit displays a more clearly periodic modulation after a
fast increase for a short time, which is an indicator of the
underlying regular classical dynamics. If the initial states
are in the chaotic region, the classical chaos leads the en-
tropy to rise more rapidly and to arrive at a saturation of
the quantum entanglement in a chaotic oscillatory manner
rather than the oscillatory increase shown in reference [26].
In order to better understand the classical-quantum corre-
spondence, the mean entanglement, which is defined to be
averaged over time, is also applied to describe the distinct
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changes at and near the boundary between the regular
and chaotic motions.

This paper is organized as follows: in Section 2,
we shall derive a two mode Hamiltonian describing the
two-component BECs interacting with a classical near-
resonant laser that is rapidly and periodically switched
on and off in time to approximate a series of delta func-
tions. It will be found that the system behaves collectively
as a quasispin-1/2 obeying the dynamics of the quantum
kicked top. In the investigation of the quantum and classi-
cal dynamics, we show that the system can be turned into
a standard quantum rotor in the phase representation at a
strong interaction limit. The validity of the two-mode ap-
proximation is also discussed in this section. In Section 3,
we consider the evolution of the mode entanglement and
establish the close correspondence between the quantum
entanglement and classical chaos. Using the mean entan-
glement, we examine the edge of the quantum chaos. In
Section 4, a simple discussion and a final conclusion are
made.

2 The quantum kicked top
in the two-component BECs

2.1 A scheme for realizing a quantum kicked top

We consider a zero-temperature two-component BEC sys-
tem which consists of N atoms trapped in two different
hyperfine states |a) and |b) coupled by a near-resonant
Raman laser [29]. Within the formalism of the second
quantization, the Hamiltonian of the system is of the
form [32,33]

H = Ha +I‘Yb +ﬁznt +ﬁexta (1)
X h2
H, = | &7 (7)) | ——V2 + Vi(F

= [ @i |- g i)

b SV 0| B (i = a,0), @)

ot = Uwy / AR (70 (P (70 (), (3)

Hepr = %/dsf{ﬂg(t)wg(f')%(ﬁ + QE(t)WJ(F)Wa(F) .
(4)
Here H; expresses the non-coupling part of the
Hamiltonian, Hj,; describes the collisions between the
interspecies and H.;; denotes the coupling with the ex-
ternal field. Atoms of mass m are trapped in the poten-
tial V;(7), which can be regarded to be identical for differ-
ent i. Uy = 4wh*ajf /m(i, j = a,b) measure the interaction
strengths between intra- and inter-component collisions,
where ajf is s-wave scattering length of condensate ¢ and
a®$ is that between condensates a and b. ¥;(7) are bosonic
field operators which destroy a particle at position 7 in
the hyperfine state |i), and satisfy the commutation rela-
tion [&;(7), W]T (7)] = 6;;0(F — 7). The effective Rabi fre-
quency 2x(t) is assumed to be positive, real and position
independent but periodically time dependent.
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The Hamiltonian (1) can be reduced to a simple two
mode Hamiltonian by an approximate expansion of the
atomic field operator: W, (7) = agq () and Wy(7) = bey (7),
where @ and b are particle annihilation operators obey-
ing the relation [i, 7] = 6;;,4,j = a,b with the spatial
and normalized mode functions ¢, () and ¢u(7). Dropping
the c-number terms, the Hamiltonian can be expressed in
terms of a(a') and IA)(ZA)T)(h =1)

where u = (ugq + Uph — 2uqp)/2 and
w; = Uy [ @76OPI6 P,

(t) = 2n(t) / &7 (7)o (7). (6)

The two-mode Hamiltonian (5) is similar to these applied
to consider the tunnelling dynamics and self-trapping be-
tween the double-well potential [34]. For the case of the
Rabi frequency §2r time-independence, a simple and ef-
ficient method has been presented to solve the model
for arbitrary (small or huge) total atom number N [37].
The constant u can be positive or negative depending on
the mixture of different components in the real spinor
BECs [38].

Rapidly and periodically switching the laser on and off
with the time interval T', {25(t) can be approximated by
a train of Gaussian pulses [39]

= () Z exp (

which approaches a d-function pulse in the limit o — 0,

—(t —nT)?*/c%), (7)

() = VFo2 S 8(t - nT) ®)
n=0

with {2y being proportional to the laser intensity.
In addition, we introduce the angular momentum op-

erator J in terms of the two boson modes

N

Jo = 5 (atb + bfa) jyzé(?ﬁd—a*z}),
~ 1 PN
Jz = 5(&Td_ i )7 (9)

(N/2)(N/2+1),
where N = a'a+ b'b commutes with the Hamiltonian and
is the total atom number of the system. Thus, the effective
Hamiltonian (5) of the system can be reexpressed as

for which the Casimir invariant is J2 =

H=uJ?+kJ, Z §(t —nT)
n=0

with k = /7o 2y [ d*7¢% () ¢y (7) referred to as the kicked
strength. The Hamiltonian (10) describes a well-known

(10)
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nonlinear quantum top model which exhibits chaos in
the classical limit, and enjoys the privilege of a finite-
dimensional Hilbert space due to the conservation of
J? = (N/2)(N/2 4 1). Recently, Milburn has suggested a
scheme to realize a similar nonlinear quantum top model
on a linear ion trap [40]. Such a periodically kicked collec-
tive spin system can also be produced using ferromagnetic
resonance at very high signal powers [41], which is now an
attractive candidate to study classical and its quantum
counterpart [42].

2.2 The quantum and classical dynamics

The quantum and classical dynamics of the kicked top
have been studied in depth by some authors [16,43]. Here
we shall only introduce some important results. As an ap-
propriate description, the Floquet operator transporting
the state vector from immediately after one kick to imme-
diately after the next reads

P = o kT s p—iu?

; (11)
by which the quantum map is created. For the rest of the
paper, we will focus our attention on the case k = 7/2 and
T = 1, such that the effective Hamiltonian (10) becomes

- Ay T e
H= —J2+§JxZ(5(t—n), (12)
n=0
to simplify both quantum and classical dynamics. Here we
have set A = Nu.
It is natural to choose the simultaneous eigenstates

of J? and J. as a basis, which form N + 1 basis vectors
defined by

J2|jom) = j( + 1)lj,m), Jo[j,m) = mlj,m),  (13)

where
(dT)N/2+m(BT)N/27m
VN/2+m)I(N/2 —m)!

Here the values of m are taken from —N/2 to N/2 and
j = N/2, and |vac) denotes the vacuum state. The matrix

elements of £ in these states are simply given by

lvac). (14)

g, m) =

(j,m|F|j,m’) =
i

[ i+ igtm =) a2, (). 9

in which d(j ) /() is the Wigner d function defined by

din (8) =3 (=)'
l
VG +m)IG —m)I(G +m)!(j —m)!
G+m = DG —1—m)(1—m +m)!

x cog(2i—2l+m’—m) <§) sin(@—m'+m) (g) (16)
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Fig. 1. Phase space plot for the classical kicked top with
A = 3.5. Three hundred trajectories are plotted, each for a du-
ration of 300 kicks.

for arbitrary (either all integer or all half-integer) values
of j,m,n’ such that |m| < j and |m/| < j. The summation
over [ runs from max(0, m + m') to min(j +m,j +m’).
By approximating second order expectation val-
ues (jzjj> as a product of the first order expectation val-

ues (J;) and (J;), the corresponding classical dynamics is
described by the three-dimensional map

Xnt1 = Xp cos(AY,) + Z, sin(\Y,),
Y41 = X, sin(A\Y,,) — Z,, cos(AY,,),

Zn+1 =Y,, (17)
where X = (J,)/4, Y = (J,)/j and Z = (J.)/j, and
n denotes the kicked time. The variables X, Y and Z
are related by X2 + Y2 + Z2 = 1, and the restric-
tion reduces the classical map to two dimensions, such
that (X,Y,Z) can be reparameterized as (X,Y,Z) =
(sin @ cos ¢, sin O sin ¢, — cos @), where 6 and ¢ are the po-
lar and azimuthal angles, respectively. Generally, fixing
k = m/2 the system is in regular motion for the param-
eter region A\ < 2.5, whereas chaos prevails in the region
A > 3. In Figure 1, we give the classical phase space plot
of a kicked top when the nonlinear parameter A = 3.5, for
which there are a mixture of regular and chaotic areas of
significant size. Three areas will be of particular interest
to us in the following. The first clearly reside in a stable is-
land, which surrounds a fixed point (8, ¢) = (2.32,1.19) of
the classical map given above. The second is in the chaotic
sea and nowhere near a regular island. The third lies be-
tween the extremes of regular and chaotic behavior. As
will be seen later, the dynamics of quantum entanglement
in the quantum kicked top closely depends on this phase
space structure of the classical kicked top.

2.3 A kicked rotor as a limiting case of the top

In classical dynamics, increasing A more and more leads
the system to strong chaos. We recall that A = Nu can

The European Physical Journal D

be regarded as a parameter measuring the strength of
interaction between particles. Recently, the influence of
the interaction between atoms on the dynamics in several
chaotic BEC systems have been a subject of considerable
interest [44-50]. We now proceed to show that in a strong
interaction regime, the quantum kicked top can be turned
into a quantum kicked rotor model. We use the eigenstates
of the operator J. to construct the eigenstates of the rel-
ative phase between the two component condensates

1 N/2
|9) = —= e "?j,n). (18)
\/ﬂ n:—ZN/2

In the experiment, on one hand, the kick strength may be
a very small value due to adjustable parameter ¢ and (2.
On the other hand, the interaction can be tuned from —oo
to oo by Feshbach resonance [31]. These facts may make
the conditions £ < uN and N > 1 hold. In the phase
representation, one can use the replacements jz — —104

and J, — (N/2) cos ¢ [32,51], so that we can rewrite the
Hamiltonian (10) as

ﬁu%;+kN/2cos¢;5(tnT) (19)

which is similar to the standard QKR model [52]. There-
fore, we can apply the phase model to study the many-
body effects due to the parameter w describing the
interaction.

2.4 Validity of the two-mode approximation

In making the calculation above, we have relied heavily on
the two-mode approximation, essentially consisting in ne-
glecting all modes except the condensate modes. At zero
temperature, this amounts to ignoring the atoms which
have left the condensate mode due to the two-body in-
teractions. In order for this approximation to provide a
reasonably accurate picture, we have also assumed that
the parameters uqq bb,ap, U, 20 and k are reasonably con-
stants for the cases studied. However these parameters all
depend on the self-consistently defined condensate modes
of the system, which in turn depend on the particle num-
bers N, and N. Thus the two-mode approximation will
be most accurate when the dependence of the density pro-
file on the particle number distribution is weak. The valid
conditions of the two-mode approximation were demon-
strated in [35,36], which indicate that this approxima-
tion provides a reasonably accurate picture for the fol-
lowing conditions: (i) the weak many-body interactions,
i.e., small number of condensed atoms. For the large con-
densates, the mode functions of condensates are altered
due to the collisional interactions, and the two-mode ap-
proximation breaks down. As shown in [35], a simple es-
timate exhibits that this happens when the number of
atoms Na’*® < rg, where a°¢ is a typical scattering length
and r( is a measure of the trap size. If we consider a large
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trap with the size rg = 10 ym and the typical scattering
length a°¢ = 5 nm, the two-mode approximation is appli-
cable for N < 2000 in principle. (ii) The case in which
anq & apy, and agy is only slightly less than agg, ,,. There is
exactly the experimental set-up used in reference [38], in
which these selected hyperfine states |F = 1, Mp = £1) of
natrium approximately satisfy the above mentioned con-
ditions. This is the case that we will consider here, and
then the parameter u takes positive value in our following
calculation. (iii) Weak coupling between two-component
BECs. In this case, weak coupling is defined by the Rabi
frequency satisfying !20/(wacwywz)1/3 = ()y/w < 1, where
w = (wxwywz)l/ 3 is the geometric-averaged angular fre-
quency for the trapping potential. By adjusting the laser
intensity we can always find the regime in which the spa-
tial and normalized mode functions ¢, (7) and ¢y (7) vary
slowly in time, namely they are “slaved” by the popula-
tions [36], so that the parameters k and w also vary slowly
in time. Thus in our calculation we can treat the param-
eters u and k as constants [30,32-34,36,37,51] at least to
the zeroth approximation.

3 Entanglement and quantum chaos
3.1 The initial state

To obtain a sharply initial wave packet, we use a general-
ized spin coherent state (SCS), since it will minimize the
initial uncertainty product. Such a state may be defined
in the |j,n) basis [53]

10, ¢) = exp [~i0(J, sin¢ — iy, cos §)] |7, —j) . (20)
Its properties are given by
(6,61J2/410,¢) = sin6 cos ¢,
(0,91J,/j|0,$) = sinfsin ¢,
(0,1J./10,8) = — cos 6. (21)

In this article, we use the SCS as the initial state so that
the mean values of some physical quantities have corre-
spondence in classical phase space.

3.2 Entanglement between the two modes

In previous work, the systems under study are often con-
sidered as a collection of N single-qubit subsystems. Bi-
partite and pairwise entanglement have been used to de-
termine the structure of the entanglement. For instance,
in the quantum kicked top, the bipartite entanglement
between a pair of qubits and the rest of the system have
been calculated to explore the connection between quan-
tum entanglement and chaos. In the coupled kicked top,
the bipartite entanglement between the two single kicked
tops have been discussed. Since the individual bosons are
not physically accessible and distinguishable subsystems
of the kicked two-component BEC system, we need to

269

consider other possible decompositions into subsystems.
While we cannot measure which mode a specific particle
is in, the occupation number of a given mode is physical
observable. In our case, the two modes differ in the in-
ternal quantum number, and are a clearly distinguishable
subsystem. We can thus regard the two coupled BECs as
a bipartite system of the modes. As will be seen later, the
entanglement between the two modes has different char-
acteristics compared to the above-mentioned bipartite en-
tanglement. Recently, a scheme of two mode entanglement
has been proposed for entanglement swapping in such cou-
pled BEC system.

For pure states, bipartite entanglement is well-defined
and can be quantified by the entropy of entanglement of
either subsystem. If we initially choose a pure state, the
system remains in a pure state at later time. Since we
consider only the entanglement of pure states, we will em-
ploy the entropy of the subsystem as a measure of the
quantum entanglement. More precisely, we will use the
von Neumann entropy of the reduced density operator of
any subsystem. The reduced density operator of a sub-
system is found by tracing out the other subsystem via
the partial trace. Once we obtain the reduce density ma-
trix, the entanglement can be readily calculated. If pyy is
the density operator describing some states of a bipartite
system, the reduced density operator for subsystem a is
defined by

pa = Try (pab) (22)

where Trp, is the partial trace over subsystem b. The en-
tropy of entanglement is then given by

E(pa) = —Tr (palog (pa)) = — Y Axlog (M) (23)
k

where the logarithm is taken in base 2, and {\;} are the
set of eigenvalues of the reduced density operator p,. The
value of E varies between 0 (for the separable product
states) and a maximum of logd (for the maximally entan-
gled states corresponding to a completely mixed density
operator), where d is the dimension of the Hilbert space
of the subsystem.

A general state of the system can be expressed in term
of the Fock states as

N/2

> cat)IN/2+n) IN/2—n),

n=—N/2

) = (24)

which implies that the mode a has N/24n bosons and the
mode b has N/2—n bosons at the same time, where ¢,, sat-

isfies the normalization condition ZgiiN/Q len(t)]? = 1.
Using the Fock basis, the density operator is given by

N/2

2.

n,m=—N/2

pab = [V) (Y] = CmCy [m)|N = m)(n|(N —n].
(25)

Here |m) = |[N/24m) has been adopted. The reduced den-

sity operator of mode a is obtained by taking the partial
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trace with respect to mode b
N/2

pa=To(l0) W) = D lealt)Pn)(nl.

n=—N/2

(26)

From the above expression, we can see that the reduced
density operator in the Fock basis is diagonal and the
eigenvalues are simply |c,(¢)|?. The entropy of entangle-
ment between the two modes thus reads

N/2
E(pa) = —Tr(palogpa) = — Y lea(t)* loglen(t)],
n=—N/2
(27)
A simple calculation gives the maximal entanglement

N/2 1 1

Ema:n = — ZN/2 N——|—1 IOg N—H = log(N + 1), (28)

ne—

which corresponds to a completely
operator.

mixed density

3.3 The dynamics of entanglement

To begin with, we investigate the dynamics of entangle-
ment for the initial states with the same mean entropy in
different regions of the classical phase space. Four areas
are of particular interest, namely a fixed point, a stable
island, a chaotic sea and the border between the regular
and the chaotic regions. We choose the nonlinear param-
eter A\ = 3.5 for which the phase space is mostly covered
by the chaotic region with very clearly regular islands. For
convenience, we fix § = 2.32 and change ¢ to vary through
the above-mentioned four different regions, a fixed point
occurs at ¢ = 1.19, a point in the regular region lies at
¢ = 1.40, a point with ¢ = 2.40 is inside the chaotic sea
and the edge of chaos can be found at ¢ = 1.70. The
initial states are chosen as SCSs with minimum uncer-
tainty and are well localized around the four points in the
phase space. In Figure 2, we show the time evolution of the
von Neumann entropy. We observe that as the dynamics
evolves, the entanglement increases more rapidly for an
initial state localized in the chaotic region with ¢ = 2.40
than ones centered on a fixed point and regular islands.
Furthermore, after a short time, the entropy saturates for
the initial state inside the chaotic sea. By contrast, the
entropy for a fixed point and the stable orbit display a pe-
riodic modulation, which is an indicator of the underlying
regular classical dynamics. Although the underlying chaos
enhance the production of entanglement, we also find that
the entanglement between the modes cannot still reach its
maximal value F,,,,. The bounds on entanglement due to
chaos have been considered within the framework of the
random matrix theory [22].

To further display the distinct changes between the
regular and chaotic region, we introduce the mean entan-
glement, which is defined to be averaged over time

1 "
Err = — E(t). 2
e ) (29)
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Fig. 2. The dynamical evolution of the von Neumann entropy
for different initial SCSs with fixed § = 2.32. Other parameters
are chosen as A = 3.5 and N = 50.
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Fig. 3. The mean von Neumann entropy vs the azimuthal an-
gle ¢. The mean entropy is plotted for N = 20 (solid line),
N = 50 (dashed line) and N = 100 (dotted line). Other pa-
rameters are the same as in Figure 1. The time average is over
200 steps.

Here the time interval 7" should be much longer than the
time scale used. We vary the azimuthal angles ¢ from —7
to m with fixed polar angle 6 of the SCS as before. The cen-
ter of the SCS thus commences inside the chaotic sea and
goes through two regular islands. In Figure 3 we display
the corresponding numerical results of the mean entangle-
ment E7p. When the azimuthal angles ¢ pass from —mn to
the first regular region, the entropy decreases until it ap-
proaches a minimum which corresponds to the fixed point
(0, 9) = (2.32,—1.95). Subsequently, the mean entropy in-
creases to a flat larger value corresponding to the chaotic
sea. We also observe that as ¢ varies, the mean entropy
undergoes two distinct changes at two different increase
rates. For example, from the fixed point to the border be-
tween the regular and chaotic regions, the mean entropy
rises rapidly, and from the border to the chaotic sea, the
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Fig. 4. The mean von Neumann entropy versus the nonlinear
parameter A for the parameter N = 50 and the time average
over 50 kicks.

mean entropy becomes flat with very tiny change. On
the other hand, it is also shown that the larger number
of the particle corresponds to the wider regular region.
In the larger number limit, the regular region here will
coincide with that of classical chaos in Figure 1.

In Figure 4 we show the A dependence on the mean en-
tropy. When the nonlinear interaction is relative weak, the
corresponding classical phase space exhibits clear regular
islands inside the chaotic sea, such that the mean entropy
displays small oscillations. As the parameter A rises gradu-
ally, the corresponding classical dynamics enters gradually
the strong chaos region and the mean entropy displays a
rapid increase at A = 3.80 and a saturation when A = 5.00.
Thus, we have a good classical-quantum correspondence.

4 Conclusion

We have examined a kicked two-component BEC system,
which obeys collectively the dynamics of the quantum
nonlinear top. A more physical description of the system is
regarded as a bipartite system, where the subsystems are
the two modes. We investigated the relationship between
the entanglement of the two modes and the underlying
chaos. The classical chaos leads to rapid rise of the entan-
glement and saturation after a short time. Furthermore,
the saturated values of the entanglement fall short of its
maximum. The origin of these results lie in the competi-
tion between the classical chaos and the quantum phase
coherence. In general, chaos tends to lead the system to
approach a completely mixed state with the loss of the
phase information, in which the von Neumann entropy
takes the largest value FE,,... By contrast, the phase co-
herence between the two BECs suppresses the increase
of entanglement induced by chaos. In the classical limit,
the increases in the strength of interaction between atoms
drive the system, gradually changing from being mainly
regular to being dominantly chaotic. However, the work
of Law and coworkers has shown that the relative phase
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of the two components can be locked without diffusion
when the interaction strength between the two compo-
nents equals a certain critical value [54].

Recently, quantum computation [55] and quantum in-
formation [56] with BEC atoms has been an interesting
subject. It is well known that quantum entanglement is
a kernel subject in quantum computation and quantum
information, thereby, investigating the relation between
entanglement and chaos seems to be very important for
controlling the quantum entanglement in BECs.

This work was supported by the National Nature Science Foun-
dation of China under Grant No. 10275023.
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